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HEAs: A New Breed of Materials

Compositional

More than 5 principal 

elements

Configurational

Entropy greater than 1.5R

High Entropy Effect

Stabilizes simple solid 

solution phases

Cocktail Effect

Unique combination of 

properties

George, E.P., Raabe, D. & Ritchie, R.O. High-entropy alloys. Nat Rev Mater 4, 
515–534 (2019). https://doi.org/10.1038/s41578-019-0121-4
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Stacking Fault Energy: A Key 
Parameter

1 Intrinsic Stacking Fault

One layer displaced within 

the crystal structure

2 Extrinsic Stacking Fault

Two layers displaced 

within the crystal 

structure

3 SFE and Mechanical Properties

Low SFE favors twinning, high SFE favors slip

De Cooman, B.C., Y. Estrin, and S.K. Kim, Twinning-induced plasticity (TWIP) steels. 

Acta Materialia, 2018. 142: p. 283-362.
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Twinning-Induced Plasticity (TWIP)

Mechanical Twinning

Formation of new crystallographic orientations

Coherency Loss

Interface between twin and parent crystal

Alloying Element Effect

Impact on twinning mechanism activation

De Cooman, B.C., Y. Estrin, and S.K. Kim, Twinning-induced plasticity (TWIP) steels. 

Acta Materialia, 2018. 142: p. 283-362.
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Predicting SFE in HEAs: The Need for Machine 
Learning

Complexity of HEAs

Many elements, wide range of 

compositions

Experimental Limitations

Time-consuming and expensive

ML for Prediction

Fast and efficient, can handle large 

datasets
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Machine Learning Approach: Data and Model

Dataset Construction

Experimental data, DFT calculations, 

databases

Classification Model

Prediction of SFE ranges through 

location 

Regression Model

Predict the numerical value range of SFE
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Machine Learning Approach: Data and Model
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Machine Learning Approach: Data and Model
Classification Model

Prediction of SFE ranges through 

location 

Sahour, Hossein & Gholami, Vahid & Torkman, Javad & Vazifedan, Mehdi & Saeedi, Sirwe. (2021). Random forest 
and extreme gradient boosting algorithms for streamflow modeling using vessel features and tree-rings. 
Environmental Earth Sciences. 80. 10.1007/s12665-021-10054-5. 
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Machine Learning Approach: Data and Model
Classification Model

Prediction of SFE ranges through 

location 

Lagrange multiplier
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Machine Learning Approach: Data and Model

Regression Model

Predict the numerical value range of SFE

towardsdatascience.com-designing-your-neural-networks
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results
Data visualization

Zhang, X., et al., Predicting the stacking fault energy in FCC high-

entropy alloys based on data-driven machine learning. Journal of 

Materials Research and Technology, 2023. 26: p. 4813-4824
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Scater diagram of bi-element system
Zhang, X., et al., Predicting the stacking fault energy in FCC high-

entropy alloys based on data-driven machine learning. Journal of 

Materials Research and Technology, 2023. 26: p. 4813-4824
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Model Evaluation and Validation

Accuracy

How well the model predicts the outcome

Precision

How reliable the model's predictions are

Recall

How well the model identifies all relevant cases Zhang, X., et al., Predicting the stacking fault energy in FCC high-

entropy alloys based on data-driven machine learning. Journal of 

Materials Research and Technology, 2023. 26: p. 4813-4824
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Model Evaluation and Validation

Precision

How reliable the model's predictions are

Zhang, X., et al., Predicting the stacking fault energy in FCC high-

entropy alloys based on data-driven machine learning. Journal of 

Materials Research and Technology, 2023. 26: p. 4813-4824
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Future Directions and Implications

1
Data Visualization

Insights into trends and relationships

2
Model Optimization

Improved accuracy and efficiency

3
Real-World Application

Accelerated HEA design and development
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