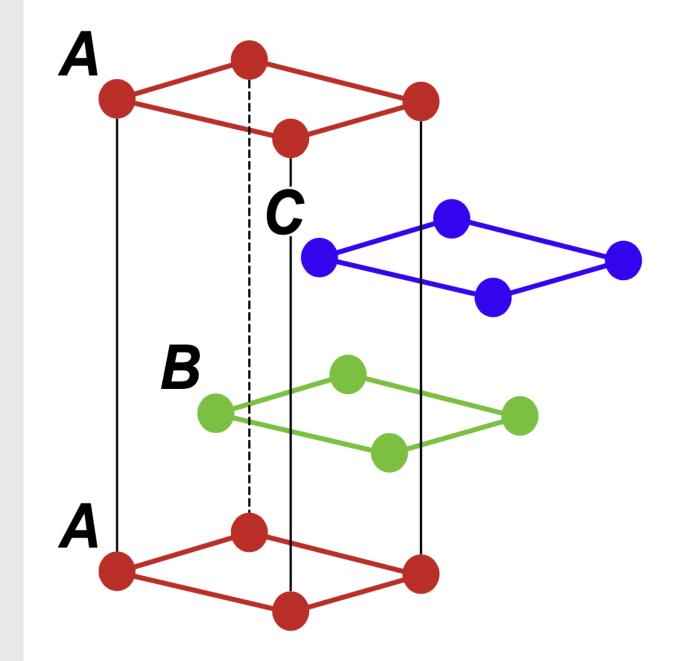
Predicting Stacking Fault Energy in High Entropy Alloys: A Machine Learning Approach

Exploring the potential of machine learning to predict stacking fault energy (SFE) in high-entropy alloys (HEAs). This presentation will examine the relationship between SFE, twinning-induced plasticity (TWIP), and the unique properties of HEAs.

🔺 By Ali Tubayi & Morteza khodaei

Professor Abbas Zarei

TA : ENG Kamyar



HEAs: A New Breed of Materials

Compositional	Configurational	High Entropy Effect	Cock
More than 5 principal elements	Entropy greater than 1.5R	Stabilizes simple solid solution phases	Unique prope

George, E.P., Raabe, D. & Ritchie, R.O. High-entropy alloys. *Nat Rev Mater* **4**, 515–534 (2019). https://doi.org/10.1038/s41578-019-0121-4

cktail Effect

que combination of perties

Stacking Fault Energy: A Key Parameter

Intrinsic Stacking Fault

Extrinsic Stacking Fault

SFE and Mechanical Properties

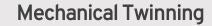
One layer displaced within the crystal structure

Two layers displaced within the crystal structure

De Cooman, B.C., Y. Estrin, and S.K. Kim, Twinning-induced plasticity (TWIP) steels. Acta Materialia, 2018. 142: p. 283-362.

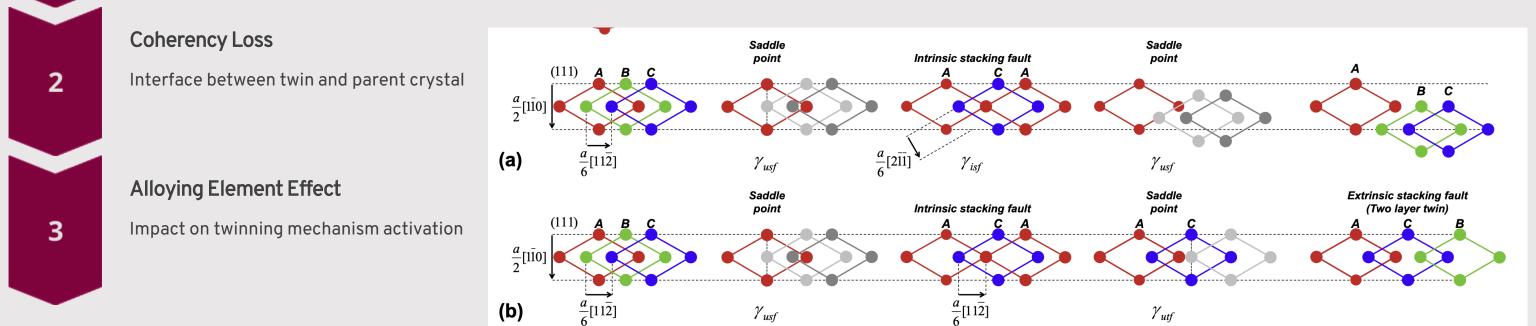
Low SFE favors twinning, high SFE favors slip

Twinning-Induced Plasticity (TWIP)



1

Formation of new crystallographic orientations



De Cooman, B.C., Y. Estrin, and S.K. Kim, Twinning-induced plasticity (TWIP) steels. Acta Materialia, 2018. 142: p. 283-362.

Twinning-Induced Plasticity (TWIP)

Formation of new crystallographic orientations

Coherency Loss

1

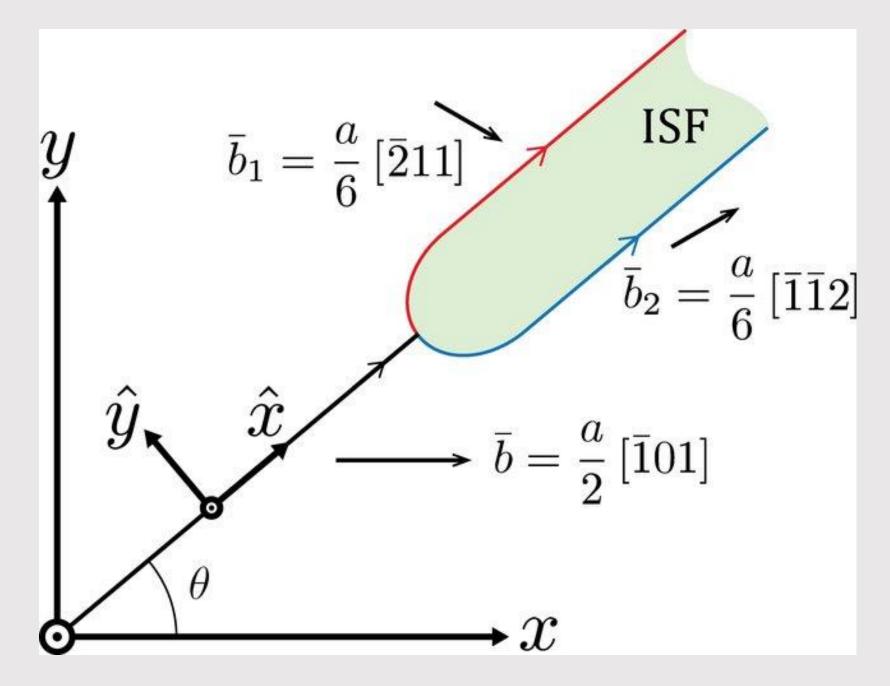
2

3

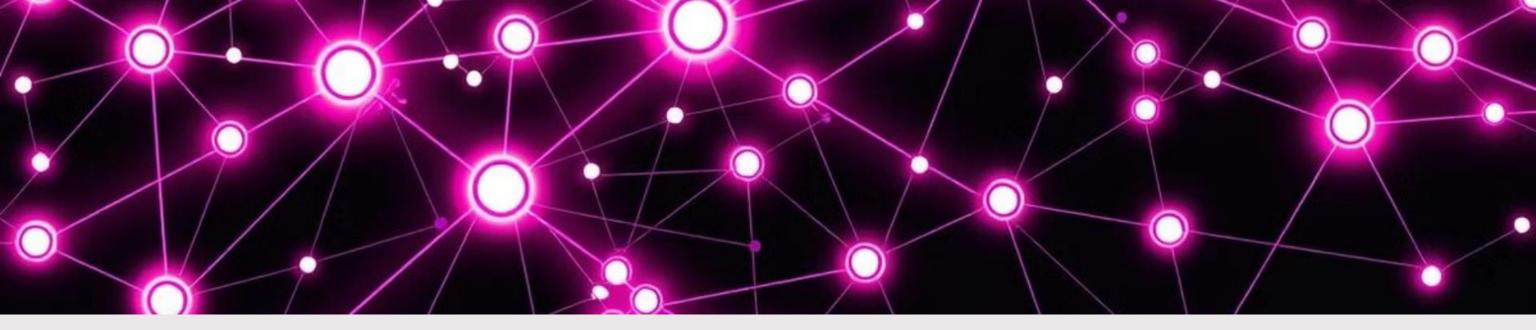
Interface between twin and parent crystal

Alloying Element Effect

Impact on twinning mechanism activation



De Cooman, B.C., Y. Estrin, and S.K. Kim, Twinning-induced plasticity (TWIP) steels. Acta Materialia, 2018. 142: p. 283-362.



Predicting SFE in HEAs: The Need for Machine Learning

Complexity of HEAs

Many elements, wide range of compositions

Experimental Limitations

Time-consuming and expensive

ML for Prediction Fast and efficient, can handle large datasets

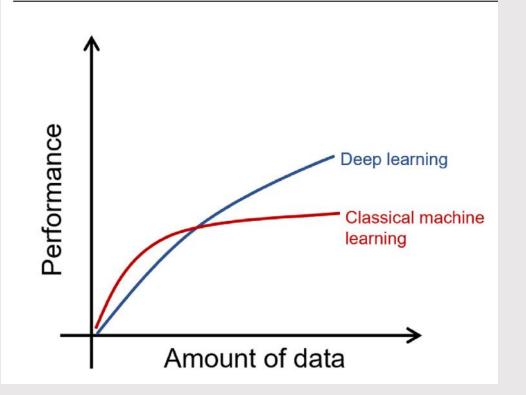
Dataset Construction

Experimental data, DFT calculations, databases

Classification Model

Prediction of SFE ranges through location

Regression Model

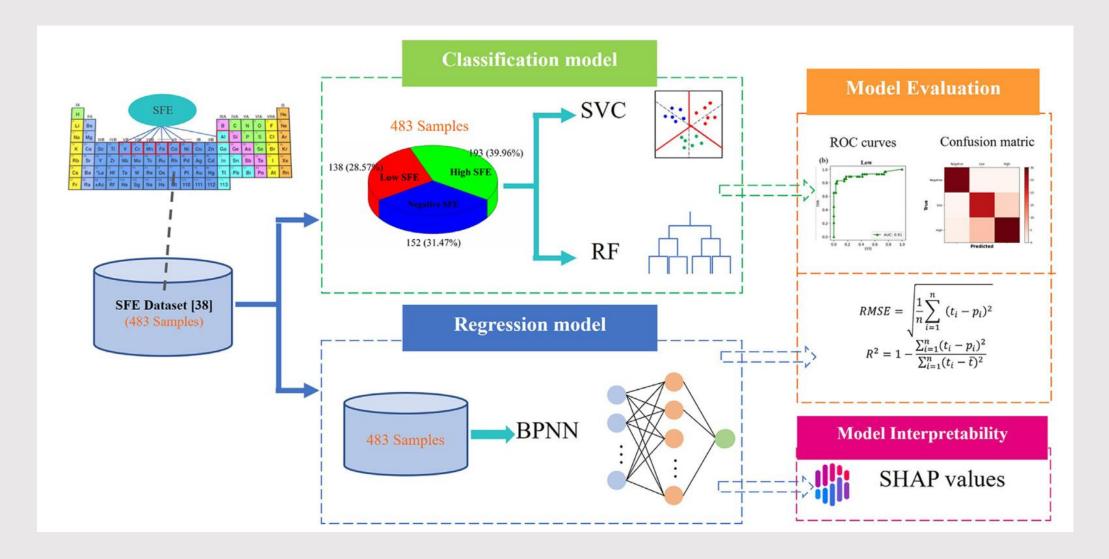


RMSE

 $R^2 = 1$

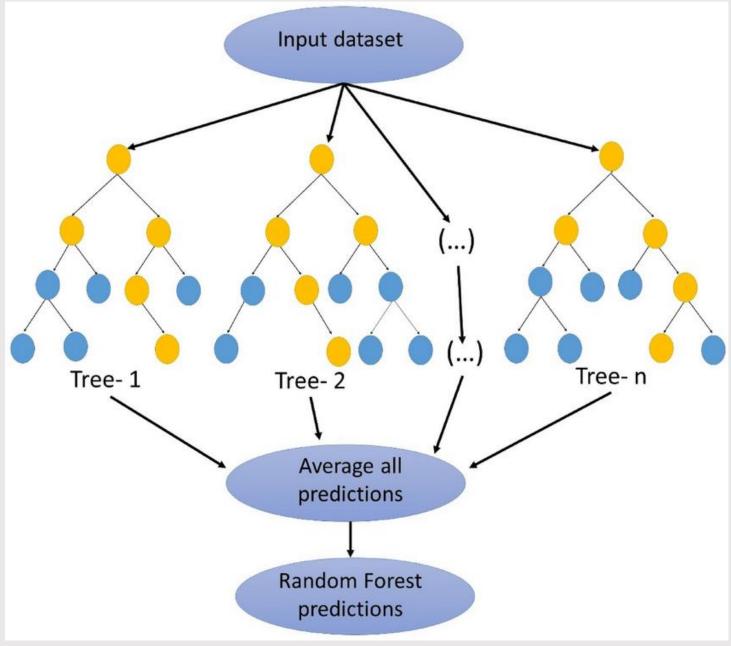
Predict the numerical value range of SFE

$$= \sqrt{\frac{1}{n} \sum_{i=1}^{n} (t_i - p_i)^2} \\ - \frac{\sum_{i=1}^{n} (t_i - p_i)^2}{\sum_{i=1}^{n} (t_i - \bar{t})^2}$$



Classification Model

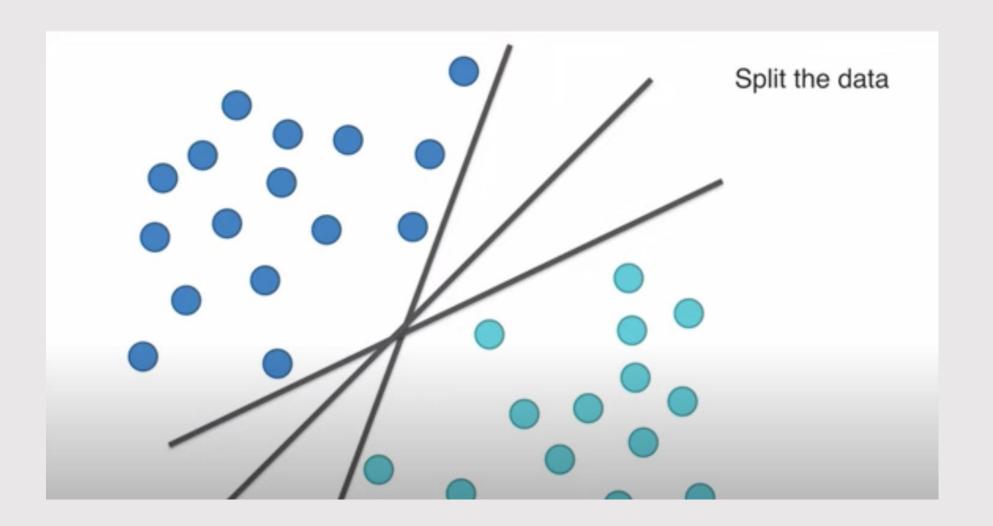
Prediction of SFE ranges through location



Sahour, Hossein & Gholami, Vahid & Torkman, Javad & Vazifedan, Mehdi & Saeedi, Sirwe. (2021). Random forest and extreme gradient boosting algorithms for streamflow modeling using vessel features and tree-rings. Environmental Earth Sciences. 80. 10.1007/s12665-021-10054-5.

Classification Model

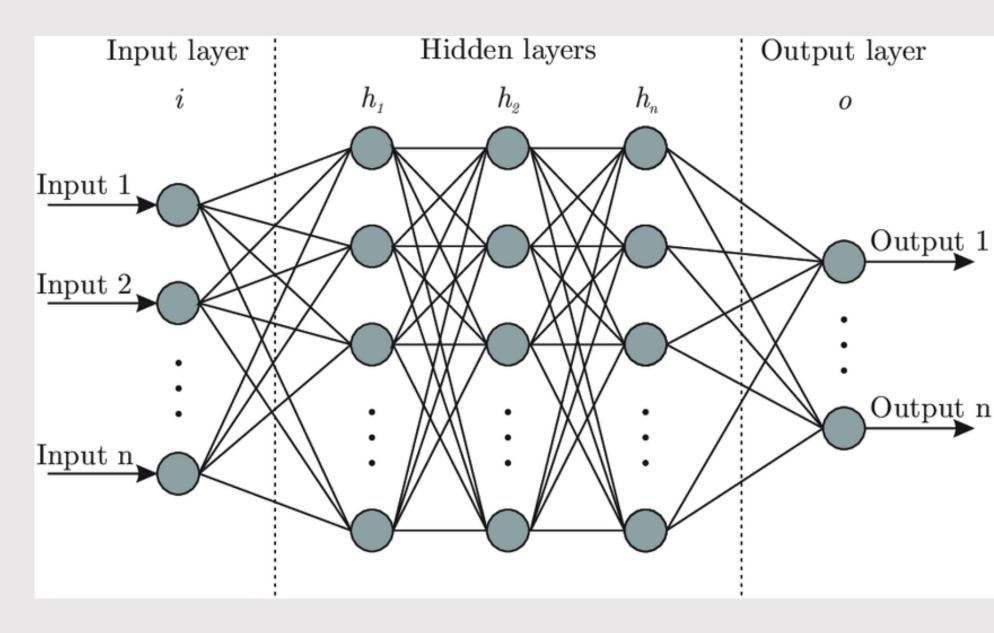
Prediction of SFE ranges through location



Lagrange multiplier

Regression Model

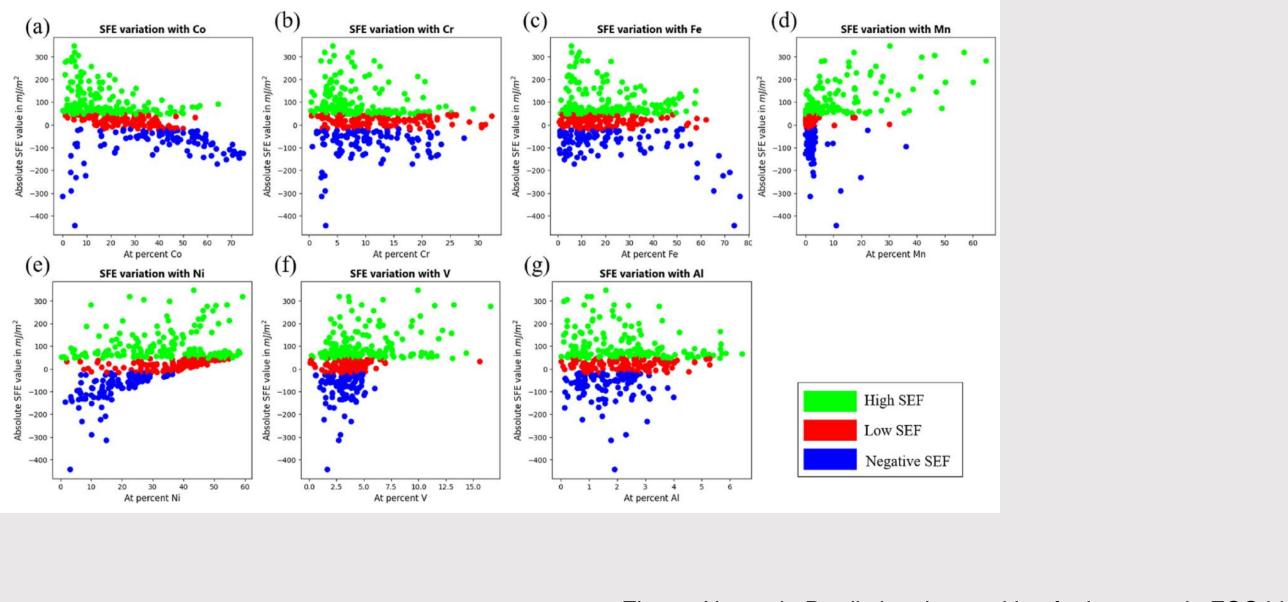
Predict the numerical value range of SFE

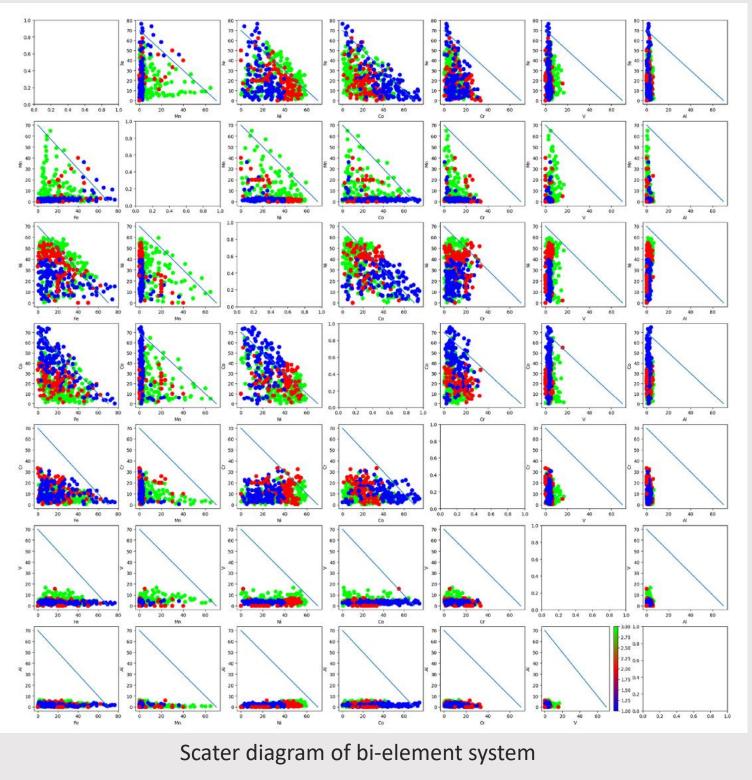


towardsdatascience.com-designing-your-neural-networks

results

Data visualization





Accuracy

How well the model predicts the outcome

Precision

How reliable the model's predictions are

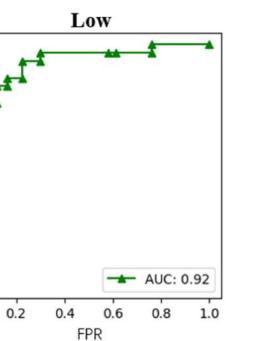
Recall

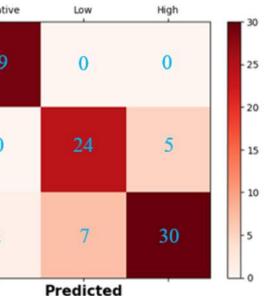
How well the model identifies all relevant cases

Accuracy

How well the model predicts the outcome

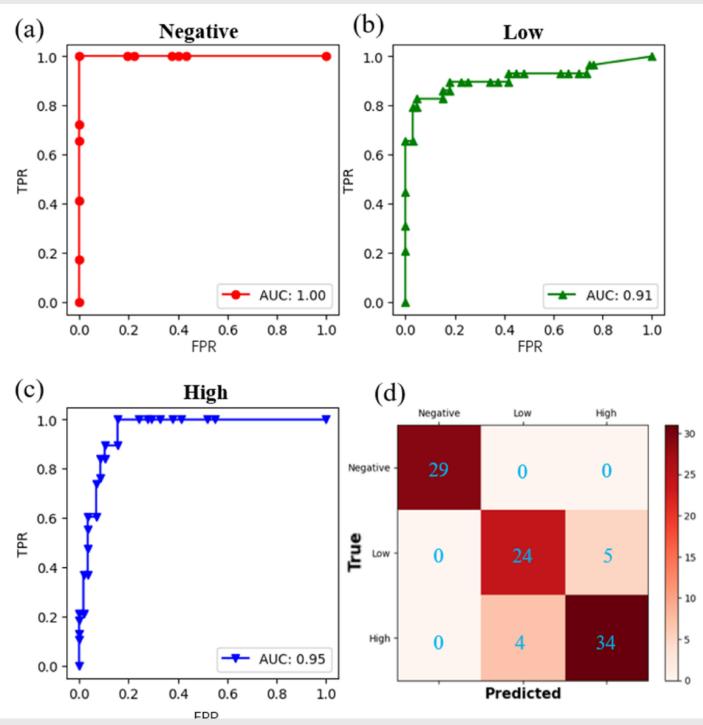
(a) (b) Negative 1.0 1.0 0.8 0.8 0.6 0.6 TPR TPR 0.4 0.4 0.2 0.2 AUC: 1.00 0.0 0.0 0.8 1.0 0.2 0.4 0.6 0.0 0.0 FPR (d) (c) High Negative 1.0 29 Negative 0.8 0.6 True TPR 0 0.4 0.2 High - AUC: 0.95 0.0 1.0 0.0 0.2 0.4 0.6 0.8 **FDD**





Accuracy

How well the model predicts the outcome

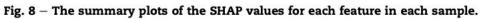


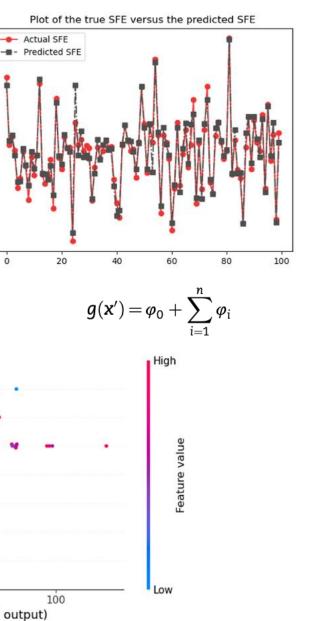
14

Precision

How reliable the model's predictions are

(b) (a) 0 Train Data 300 300 Test Data Total RMSE = 12.48mJ/m² 200 200 SFE (mJ/{m²) 100 ed -100 -200 -300 -100 -400 200 300 -400 -300 -200 -100 0 100 Actual SEE (ml/m2) |S|!(|N| - |S| $(v(S \cup \{i\}) - v(S))$ \sum $\varphi_{i}(v) =$ $S \subseteq N \setminus \{i\}$ Co Mn Cr Fe -100 -50 50 SHAP value (impact on model output)





Future Directions and Implications

