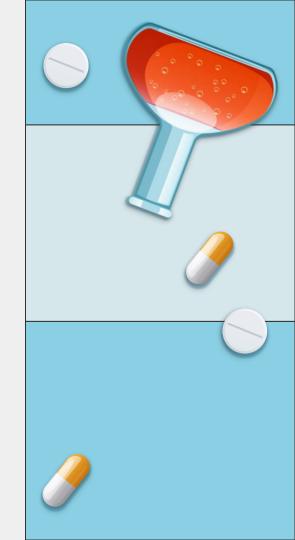
Cardiac Patch

Course: Drug Delivery Systems

Supervisor: Prof. Ghaee

Presenter: Morteza Khodaei

Spring 2025


Table of contents

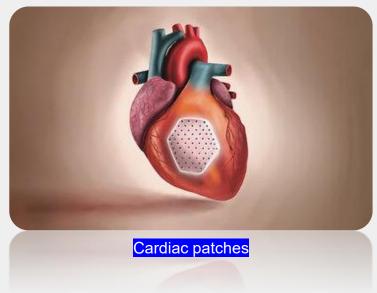
Introduction

2 fundamentals

Materials Used

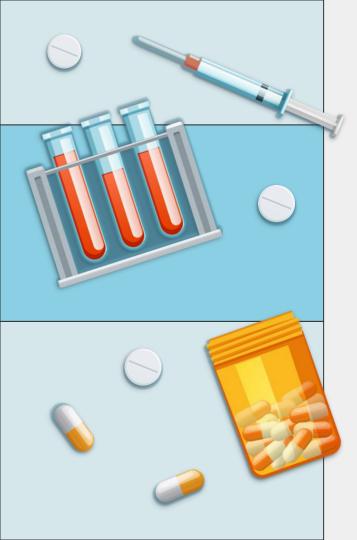
Case Studies

Introduction



Cardiac patches

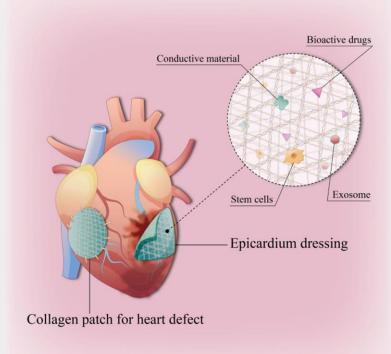
- Cardiovascular diseases (CVDs) are the leading cause of death globally
- Current treatments for myocardial infarction(MI) have limited regeneration potential
- Cardiac patches offer a platform for localized
 drug delivery and tissue regeneration


2

Fundamentals

Drug Delivery Fundamentals

- Controlled release from patches enhances local efficacy
- Mechanisms: Diffusion, degradation, stimuliresponsive release
- Materials: Hydrogels, electrospun nanofibers,
 biodegradable polymers



3 Materials

Materials Used in Cardiac Patches

- Natural polymers: Collagen, gelatin, fibrin
- Synthetic polymers: PLGA, PCL, PEG
- Smart materials:
 Thermo/pH/enzyme-sensitive
 materials

4

Case studies

Case 1: Engineered heart muscle allografts for heart repair in primates and humans

Article

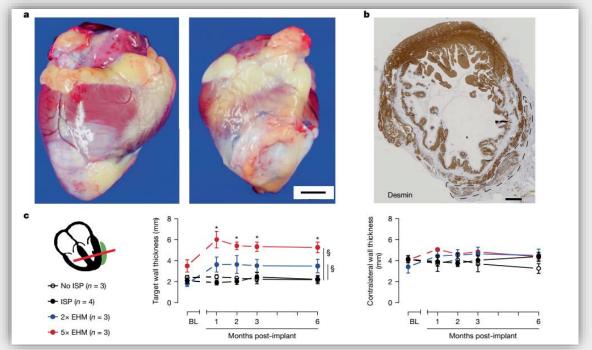
Engineered heart muscle allografts for heart repair in primates and humans

https://doi.org/10.1038/s41586-024-08463-0

Received: 19 March 2023

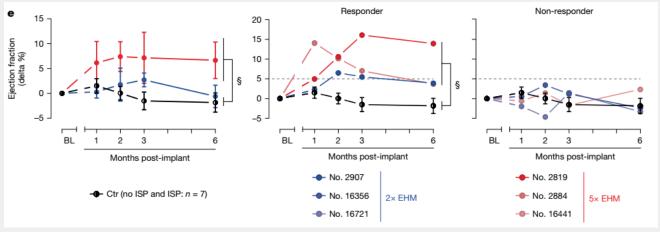
Accepted: 27 November 2024

Published online: 29 January 2025


Open access

Ahmad-Fawad Jebran^{12,29}, Tim Seidler^{2,24,29}, Malte Tiburcy^{2,5,29}, Maria Daskalaki^{2,6}, Ingo Kutschka¹², Buntaro Fujita^{2,8}, Stephan Ensminger^{2,8}, Felix Bremmer^{2,9}, Amir Moussavi^{2,10}, Huaxiao Yang^{11,12}, Xulei Qin^{11,12}, Sophie Mißbach^{2,63}, Charis Drummer^{2,6}, Hassina Baraki^{1,2}, Susann Boretius^{2,10}, Christopher Hasenauer^{1,4}, Tobias Nette^{1,4}, Johannes Kowallick^{2,14}, Christian O. Ritter^{2,14}, Joachim Lotz^{2,14}, Michael Didié^{2,3}, Mathias Mietsch^{2,13}, Tim Meyer^{2,5}, George Kensah^{1,2}, Dennis Krüger¹³, Md Sadman Sakib¹⁶, Lalit Kaurani¹⁵, Andre Fischer^{2,13,16,17}, Ralf Dressel^{2,18}, Ignacio Rodriguez-Polo^{2,6}, Michael Stauske^{2,6}, Sebastian Diecke^{19,20}, Kerstin Maetz-Rensing²¹, Eva Gruber-Dujardin²¹, Martina Bleyer²¹, Beatrix Petersen^{2,22}, Christian Roos²², Liye Zhang²², Lutz Walter^{2,22}, Silke Kaulfuß²³, Gökhan Yigit^{2,23}, Bernd Wollnik^{2,17,23}, Elif Levent^{2,5}, Berit Roshani^{2,4}, Christiane Stahl-Henning^{2,4}, Philipp Ströbel⁹, Tobias Legler^{2,25}, Joachim Riggert^{2,25}, Kristian Hellenkamp³, Jens-Uwe Voigt²⁶, Gerd Hasenfuß^{2,3}, Rabea Hinkel^{2,31}, Joseph C. Wu^{11,2}, Rüdiger Behr^{2,6} & Wolfram-Hubertus Zimmermann^{2,23,17,27,28,25}

Case 1: Engineered heart muscle allografts for heart repair in primates and humans



Case 1: Engineered heart muscle allografts for heart repair in primates and humans

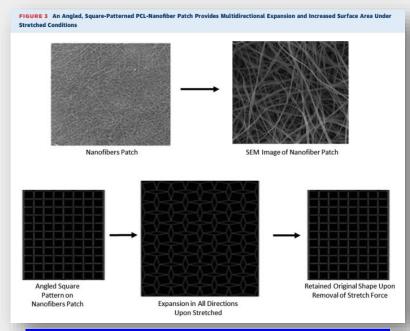
Case 2: Living Nanofiber-Enabled Cardiac Patches for Myocardial Injury

Living Nanofiber-Enabled Cardiac Patches for Myocardial Injury

Sukhwinder K. Bhullar, PhD,^a Raneeta Thingnam, MSc,^a Eryn Kirshenbaum, PhD,^a Darya Nematisouldaragh, MSc,^a Molly Crandall, MSc,^a Stephanie M. Willerth, PhD,^b Seeram Ramkrishna, PhD,^c Inna Rabinovich-Nikitin, PhD,^a Lorrie A. Kirshenbaum, PhD^{a,d}

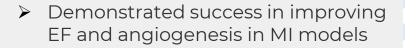
HIGHLIGHTS

- · Adverse cardiac remodeling following myocardial infarction is a leading cause of morbidity and mortality worldwide.
- Several impediments exist with current cell therapy approaches to repair damaged myocardium following injury, highlighting the need for alternative approaches.
- This review highlights a promising new approach of using biomaterial electrospun nanofiber patches for promoting tissue regeneration.



Case 2: Living Nanofiber-Enabled Cardiac Patches for Myocardial Injury

- Tailored nanofiber geometry allows multidirectional expansion under cardiac stress
- Square-patterned PCL patch mimics myocardial mechanical dynamics


An Angled, Square-Patterned PCL-Nanofiber Patch

Case 2: Living Nanofiber-Enabled Cardiac Patches for Myocardial Injury

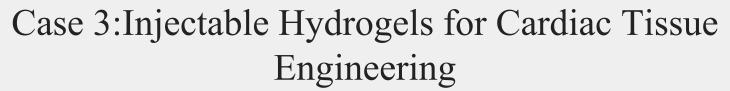


TABLE 1 Nanofibers Cardiac Patches for Myocardial Regeneration

Biomaterials	Cellular Nanofiber Cardiac Patch	First Author
PCL-gelatin	hiPSC-CMs	Kumar et al ²⁶
PCL/GelMA-Ppy nanoparticles	Cardiomyocytes/fibroblasts	He et al ³¹
PCL/gelatin	hiPSC-CMs	Sridharan et al ³⁶
Alginate/PCL	Cardiac progenitor cells	Karimi et al ⁴⁴
PCL-FN-immobilized nanofibers	UCB-MSC	Kang et al ⁶²
PLA, PEG, and PCL/collagen	HGF and IGF	Kerignard et al ⁸³
PCL	Sacrificial particles (PEO)	Wanjare et al ⁸⁴
Xylan (polysaccharides)/PVA	Acellular patch	Venugopal et al ⁸⁵
PLGA	Endothelial cells, VEGF	Fleischer et al ⁸⁶
β-PVDF	TiO ₂	Arumugam et al ⁸⁷
PEO	ECM	Shah et al ⁷⁶
PLA/PCL	Cardiomyocytes	Wei et al ⁷⁷
Alginate	Cardiomyocytes	Lee et al ⁷⁸
CNT/silk	Cardiomyocytes	Zhao et al ⁷⁹
PLA/PANI	Cardiomyoblast (H9c2)	Wang et al ⁸⁰
PCL/NO	NO ₂	Zhu et al ⁸¹
PCL	hiPSC-CMs	Liu et al ⁸²

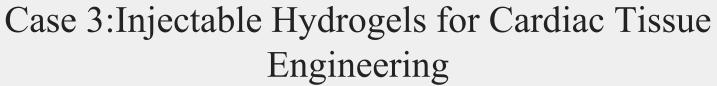
Nanofiber Cardiac Patches for Myocardial Regeneration

REVIEW

Hydrogels

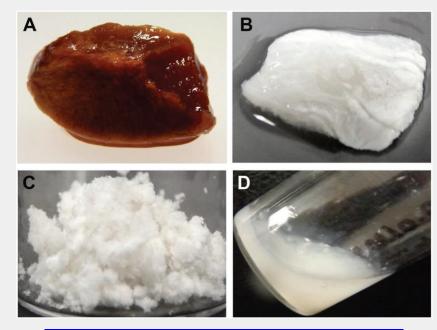
Injectable Hydrogels for Cardiac Tissue Engineering

Brisa Peña, Melissa Laughter, Susan Jett, Teisha J. Rowland, Matthew R. G. Taylor, Luisa Mestroni, and Daewon Park*



- Natural hydrogels often exhibit long gelation times (15 min – 3 hrs)
- Slow gelation risks cell loss and inefficient drug delivery

Table 2. Overview of the material properties of the natural injectable hydrogels used for cardiac tissue engineering.


Refs.	Material	Mechanical properties >6 kPa	Conductive	Gel time	Gel stimuli	Degradable
[48]	CNT mixed in collagen type I hydrogel	Yes	Yes	≈15 min	Temp	Yes
[49]	Porcine ECM cross-linked with genipin	No	No	≈15 min	Temp	Yes
[50]	Fullerenol/alginate	No	No	5–10 min	Ca gluconate solution	Yes
[53]	Porcine ECM	N/A	No	N/D	Temp	Yes
[52]	Porcine ECM with mixed or conjugated doxycycline	No	No	N/D	Temp	Yes
[53]	Porcine ECM cross-linked with genipin or chitosan	Yes	No	3 h	Genipin/temp	Yes
[54]	Type I collagen	N/A	No	N/D	Temp	Yes
[55]	Decellularized cardiac and skeletal muscle ECM	No	No	1 h	Temp	Yes
[56]	Chitosan chloride-RoY	N/A	No	8–12 min	Temp	Yes
[57]	Fibrin gel with embedded GF and TIMP-3	N/A	No	N/D	Thrombin	Yes
[58]	Chitosan gel with mixed GN	Yes	Yes	Up to 50 min	BGP-Na salt solution	Yes
[59]	Chitosan hydrogel	Yes	No	s	pН	Yes

Gelation Time of Natural Injectable Hydrogels

Decellularization and digestion of porcine cardiac ECM tissue. The porcine cardiac tissue was sliced into A) sections and then B) decellularized. The decellularized tissue was further lyophilized and ground into C) powder, and then enzymatically digested into a liquid at D) room temperature.

ECM-Derived Hydrogel Injection and Effects on LV

Conclusion

Case	Material	Type	Mechanism	Result
1	Collagen + cells	Bio-patch	Cell therapy	↑ thickness, ↓ risk
2	Nanofibers + GF	Scaffold	Sustained release	† angiogenesis
3	Injectable hydrogel	In situ gel	pH/enzymatic	↓ inflammation

- > Cardiac patches integrate drug delivery and regenerative functions
- > Material design, responsiveness, biocompatibility, mechanics

